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A boundary dynamics of sweeping interface is proposed to describe the interface that sweeps space to collect
distributed material. Based upon geometrical consideration on a simple physical process representing a certain
experiment, the dynamics is formulated as the small diffusion limit of the Mullins-Sekerka problem of crystal
growth. It is demonstrated that a steadily extending finger solution exists for a finite range of propagation
speed, but numerical simulations suggest they are unstable and the interface shows a complex time
development.
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INTRODUCTION

The boundary dynamics has been providing interesting
problems for physics and mathematics. A famous one is the
problem of crystal growth from a supercooled melt �1�. As
the melt is solidified and a crystal grows, a flat interface
between the solid and the liquid phases becomes unstable
due to the coupling of the solidification process with the
diffusion of latent heat generated at the interface �Mullins-
Sekerka instability �2��. This results in the fascinating variety
of dendritic growths of crystal under the interplay with an-
isotropic surface tension. Another example is the viscous fin-
gering, which appears when the air is injected into a viscous
fluid �Saffman-Taylor instability �3,4��. The viscous fluid is
displaced by the pressure gradient, and the pressure field is
governed by a Laplace equation with proper boundary con-
ditions. Since a Laplace equation is the diffusion equation
with the infinite diffusion constant, the viscous fingering is
the large diffusion limit of the crystal growth.

A new example of boundary dynamics is presented by a
simple experiment of Yamazaki and Mizuguchi �5�. The mix-
ture of water and corn starch powder is sandwiched between
two glass plates. After a several hours, a labyrinthine pattern
of dried corn starch will be formed when the water is evapo-
rated from the gap of the glass plates. The system is two-
dimensional, and the pattern is formed by the water-air inter-
face line as it sweeps the system to collect the granules along
it by means of the surface tension. The grains are simply
accumulated along the interface line to give friction against
the interface motion, and eventually get stuck with the glass
plates.

In the above experiment, the granules play an analogous
role to that of the latent heat in the crystal growth. They are
distributed in the wet �or melted� region, but show up when
the interface passes. The interface speed is controlled by the
granule density �or temperature� at the boundary. The differ-
ence is that the granules do not diffuse while the heat does.
In this sense, this sweeping dynamics is the small diffusion
limit of Mullins-Sekerka problem; this is the opposite limit
to the Saffman-Taylor problem but has not been investigated
yet in detail.

Analogous instabilities exist for these phenomena: A pro-
truded part of the interface advances faster because the gen-
erated heat diffuses faster �Mullins-Sekerka�, the pressure

gradient is larger �Saffman-Taylor�, or the accumulated gran-
ules are diluted over the elongated interface at the convex
region �sweeping dynamics�.

Similarities are seen in the phase field model proposed for
this sweeping phenomenon �6,7�. The model consists of two
fields: the phase field and the coupling field. The coupling
field represents the granular density, instead of the tempera-
ture in the crystal growth �8–10�. It has been demonstrated
that the model is capable of reproducing some feature of the
patterns obtained in the experiment �7�. In this paper, we will
construct the model of the boundary dynamics for the sweep-
ing interface based on geometrical and physical consider-
ations, and study its behavior.

SYSTEM CONFIGURATION AND COORDINATE

Let us start by defining the Cartesian coordinate in the
two-dimensional system near the interface between the swept
�dry� and the unswept �wet� region as in Fig. 1�a�. In the
unswept region, the granules are distributed at the area den-
sity �, which we assume constant in this paper, for simplic-
ity.

Suppose that the interface position at the time t is repre-
sented parametrically by

r�t,s� = „x�t,s�,y�t,s�… �1�

with the parameter s. Let � be the natural coordinate along
the interface, then the length element d� is

d� = ���x/�s�2 + ��y/�s�2ds . �2�

We define the tangential and the normal unit vectors of the
interface t̂ and n̂ by

FIG. 1. Schematic diagram of the interface between the swept
and the unswept regions. �a� Coordinate system with the normal and
tangential vectors. �b� Steadily extending finger.
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t̂ � �r/��, n̂ � ẑ � t̂ , �3�

where ẑ denotes the unit vector along the z axis perpendicu-
lar to the system. The normal vector n̂ is pointing into the
unswept region. The curvature � is defined as

� � −
�t̂

��
· n̂ , �4�

which is positive when the interface is convex toward the
unswept side.

In the drying process, the interface moves upwards. Using
an appropriate parametrization of s in Eq. �1�, �r /�t can be
made parallel to n̂, then the normal speed of the interface
motion vn is defined by

�r�t,s�
�t

= vn�t,s�n̂�t,s� . �5�

DYNAMICS OF SWEEPING INTERFACE

We now consider the sweeping dynamics where the gran-
ules are swept by the interface—they are accumulated along
the interface and conveyed by it in its normal direction. If we
ignore the width of the region where the granules are accu-
mulated, then the accumulated granules are described by the
line density � along the interface.

In the case where the granules are simply accumulated
along the interface and do not diffuse at all, the equation for
� is determined geometrically and should be given by

���t,s�
�t

= vn�t,s��� − ��t,s���t,s�� . �6�

The first term on the right-hand side simply represents the
sweeping accumulation. The second term comes from the
change of the interface length as it advances. The length
element along the interface increases by the factor
�1+�vn�t� during the short time period �t, thus the line
density decreases by the factor of its inverse.

The interface speed vn, on the other hand, is given by the
product of the following two factors, i.e., the driving force to
the interface, and the mobility of the interface.

�i� The driving force comes from the pressure difference
�P between the wet and the dry regions; as the water evapo-
rates, the volume of the wet region tends to shrink, then the
interface recedes due to the pressure difference. When the
interface is curved, the driving force is given by the effective
pressure difference ��P−��� with � being the surface ten-
sion, thus it is proportional to the factor �1−a�� with the
capillary length a�� /�P.

�ii� The mobility depends upon the granule density � and
should be a decreasing function of it because the granule
friction with the glass plates resists the interface motion. The
mobility becomes zero at �st when the interface gets stuck
with granules.

In the simplest case where no other scales of � are in-
volved, we can write down the equation for the interface
speed as

vn = v0f��/�st��1 − a�� �7�

with the characteristic speed v0 and the dimensionless mo-
bility f�x�, which is a decreasing function with f�0�=1 and
f�1�=0.

Equations �6� and �7� define the boundary dynamics of the
sweeping interface, which shows morphological instability
analogous to the crystal growth dynamics. The part of the
interface with ��0 tends to advance faster when f�	0.

The model contains four parameters, �, v0, �st, and a,
from which we can define the stuck-in distance �st and the
stuck-in time tst by

�st � �st/�, tst � �st/v0, �8�

which are the distance and the time that the flat interface can
advance before it gets stuck.

In order to simplify the expressions, in the following, we
employ the dimensionless unit system where �st= tst=�st=1,
then Eqs. �6� and �7� are in the form of

���t,s�
�t

= vn�t,s��1 − ��t,s���t,s�� , �9�

vn�t,s� = f���t,s���1 − R��t,s�� , �10�

with the only one dimensionless parameter

R � a/�st = a�/�st. �11�

This is the ratio of the capillary length to the stuck-in dis-
tance and is a measure of the effect of the surface tension.

The functional form of the dimensionless mobility f��� in
Eq. �10� should reflect the physical mechanism of how the
interface slows down and gets stuck due to the accumulated
granules. Here, we employ the simplest form

f��� = ��1 − �� for 0 
 � 
 1,

0 for � � 1.
� . �12�

SIMPLE SOLUTIONS

Now, we study the interface dynamics based on Eqs. �9�,
�10�, and �12�.

Flat interface

For the flat interface, �=0, thus the solution is easily ob-
tained as

vn�t� = e−t � vf�t�, ��t� = 1 − e−t � �f�t� . �13�

The flat interface can advance only by �st�=1� before it gets
stuck because it simply accumulates material.

Steadily extending finger

A possible mode of steady advance is the extending one-
dimensional finger of the width of 2�st by shoving the gran-
ules asides �Fig. 1�b��.

This type of steadily extending finger solution can be ob-
tained as follows: Suppose the finger is extending in the y
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direction with the speed V, then Eqs. �9� and �10� become

− V��y� = �1 − ���Vx�, �14�

Vx� = �1 − ���1 − R�� , �15�

where the primes denote the derivative by the natural coor-
dinate �. Then, x� and y� are related as

x�2 + y�2 = 1, �16�

thus, Eqs. �14�–�16� can be solved for x, y, and � as func-
tions of � under the physical boundary conditions

�x,y� = �0,0� at � = 0,

�x,y� = ��1,− ��, � = 1 at � = ± � ,

for a given set of R and V.
For a given R, a steady solution is possible for a finite

range of V. The condition at the tip that x�=1 and y�=0 at
�=0 in Eqs. �14� and �15� leads to the allowed range of V

V 
 �1 − �R�2. �17�

Equations �14�–�16� can be solved numerically. Figure 2
shows some of the steady solutions for the finger shape and
the line density � for R=0.2 with V=0.1, 0.2, and 0.3. One
can see that the finger tip is sharper for the larger extending
speed V.

The line density � shows rather intriguing behavior as a
function of �. The tip density is smaller for the larger V, but
for V larger than a certain value for a given R, � becomes
singular at the tip and eventually develops a cusp. Actually,
by expanding � around the tip, it can be shown that � be-
comes nonanalytic

���� − ��0�  �� �18�

with

� =
2��1 − V + R�2 − 4R

�1 − V − R� − ��1 − V + R�2 − 4R
�19�

when

1 + 1
3 �5R − 4�R2 + 3R� 	 V 	 �1 − �R�2. �20�

The singularity at the tip in the line density is a peculiar
result of the model without diffusion.

ULTRAVIOLET CATASTROPHE IN THE DIFFUSIONLESS
MODEL

We have derived the steady finger solutions, which are
smooth and analytic except at the finger tip, but in a general
time development, the diffusionless feature of the model
seems to cause the ultraviolet catastrophe, or the short wave-
length instability, even though we have taken account of the
surface tension effect by introducing the capillary length.

Actually, numerical simulations of the equations eventu-
ally yield a zigzag structure of the solution in the shortest
discretization length—This cannot be accepted as a solution
of the differential equations.

Mathematically, the problem is that the surface tension
effect in Eq. �10� is of the same form as � with the term that
causes the instability in Eq. �9�, thus the surface tension ef-
fect never dominates to suppress the instability even in the
short wavelength limit, unlike in the case of Mullines-
Sekerka–Saffman-Taylor problems.

This may be seen in the linear stability analysis of the flat
interface solution �13� �11�. Since the flat interface solution
is not steady, the linearized equations for the small deviation
from it are not of a constant coefficient, thus the analysis is
not simple, but within the approximation where the time
variation is neglected during the time scale of the perturba-
tion �quasisteady approximation�, the growth rate ��q� of the
unstable perturbation with the wave number q in the unstable
branch can be obtained as

��q� = 1
2 �− �Rvfq

2 − f f�� + ��Rvfq
2 − f f��

2 − 4f f��fvfq
2� ,

�21�

where f f�= f���f�t��; vf and �f are given by Eq. �13�. This is
positive for any q�0 when f f�	0 and

��q� → −
f f��f

R
for q → � , �22�

suggesting the ultraviolet catastrophe, thus the model is not
well defined in the continuum limit.

DIFFUSION DRIVEN BY INTERFACE MOTION

In order to avoid this instability, we introduce the diffu-
sion term along the interface in Eq. �9� as

��

�t
= vn�1 − ��� +

�

��
	�Dvn

��

��

 �23�

with a new small length scale �D. The adopted form repre-
sents the diffusion flux along the interface; the flux is pro-

FIG. 2. Steadily propagating finger solutions without diffusion
for R=0.2 with V=0.3, 0.2, and 0.1. �a� Shapes of the finger. The
plots for different speeds are shifted to avoid overlapping. Only the
part near the tip is shown for each finger. �b� The line density of
granules vs �. The finger tip is located at �=0.
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portional to the interface speed vn. Such a diffusion flux is
natural in the case where the diffusion is driven by the inter-
face motion. The grains are driven randomly along the inter-
face by the distance �D during the time �D /vn, i.e., the time
during which the interface moves by �D in the normal direc-
tion. Note that we do not assume the diffusion perpendicular
to the interface.

The linear stability analysis within the same approxima-
tion as above gives the perturbation growth rate

��q� = 1
2 �− ��R + �D�vfq

2 − f f��

+ ���R + �D�vfq
2 − f f��

2 + 4��− f f���f − �DRvfq
2�vfq

2� ,

�24�

which gives

��q� 	 0 for q � qs ���− f f���f

�DRvf
, �25�

therefore the catastrophe is suppressed.

NUMERICAL SIMULATION OF FINGER SOLUTIONS

I have performed simulations on the model with this dif-
fusion in order to see if the finger solutions are stable. Let us
start by examining the effect of the length scale �D. Figure 3
shows the results of simulations of Eqs. �10� and �23� for
R=0.2 with �D=0.2, 0.1, and 0.05. The steady solution of
V=0.1 without the diffusion ��D=0� is used as the initial
state. Only the right halves of the interfaces are shown and
the time development is represented by the plots with the
time interval �t=1. I have confirmed that the ultraviolet ca-
tastrophe is suppressed by the diffusion term. Except for the
cusps at the edges of sticking regions, numerical solutions
converge to a smooth solution as the smaller time and space
discretization is used for integral in contrast with the diffu-
sionless model, where the zigzag structure in the smallest
discretization scale develops eventually all over the interface
due to the ultraviolet catastrophe. In all cases of Fig. 3, the
fingers extend at a speed of 0.1 initially with keeping the
initial shape as the steady solution does, but eventually the

finger becomes unstable and develops wavy structures. The
length scale of the emerging structure is shorter for the
smaller �D, but they are much larger than �D. We do not see
any tendency that the steady solution becomes stable for
small �D even though the initial configuration of the steady
solution for the speed V=0.1 with R=0.2 is outside the range
Eq. �20�, thus does not have a singularity in � at the tip.

Figure 4 shows the results for the case of R=0.2 and
�D=0.1. The initial states are the steady solutions of V=0.1,
0.2, and 0.3 for �D=0. One may see some differences in the
way of how the steady solutions are destabilized for different
speeds, but again the steady solutions are unstable for all the
cases, and complex developments of the boundary are seen
after the instability.

The unstable development seen in Figs. 3 and 4 shows
some similarities to the pattern found in �5�; concave parts of
the interface evolve eventually into cusps with the tip size of
�D, and the interfaces are pinned by them. This leads to the
irregular development of the interface although there is no
randomness in the present model.

CONCLUDING REMARKS

Before concluding, let us make some remarks. First of all,
the sweeping phenomena can be seen commonly; it is not
limited to the specific experiment we referred to, although
there have not been many controlled experiments and theo-
retical analyses. Another example may be found in a pattern
formation of deposit in a drying droplet �12�. Actual situa-
tions vary and may not be as simple as the one we have
analyzed in this paper, but there should be a class of phe-
nomena characterized by the sweeping phenomenon as is
discussed here.

Secondly, the boundary dynamics should be able to be
derived from the phase field model as the narrow interface
width limit. In the case of crystal growth and the viscous
fingering, the interface width is the shortest length scale in
the problem, and the boundary dynamics can be derived
from the phase field model by taking appropriate limits �13�.
On the other hand, in the sweeping phenomenon, the length
scale over which the granular density varies in the normal

FIG. 3. The time developments of the interface for R=0.2 with
�D=0.2, 0.1, and 0.05. Only the right halves of the fingers are
shown. The time sequences are shown with the time interval
�t=1. The steady solution for V=0.1 with �D=0 are used as the
initial configurations for all the cases.

FIG. 4. The time developments of the interface for R=0.2 and
�D=0.1 from some initial configurations. The steady solutions of
the speed V=0.1, 0.2, and 0.3 with �D=0 are used as the initial
configurations. The time sequences are shown with the time interval
�t=1.
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direction to the interface is in the same order with the inter-
face width �7�, which complicates the formal derivation of
the boundary dynamics.

Last, some comments on the diffusion are in order. We
have formulated the sweeping dynamics as the small diffu-
sion limit, but in a real system, some form of diffusion
should exist. We have also found that the diffusionless model
shows the short wave instability. In Ref. �7�, the ordinary
diffusion is assumed within the interface, which results in
patterns with a larger scale for a slower process. This does
not seem to agree with the experiment. On the other hand,
we regularized the model with the diffusion characterized by
the short length scale �D, which may correspond to the grain
size in the experiment �5�. The diffusion along the interface
is considered to be driven by the interface motion, thus the

grains do not diffuse when the interface gets stuck, therefore,
the slower interface motion does not lead to a larger scale.

In summary, the boundary dynamics of the sweeping in-
terface is constructed based upon geometrical and physical
analysis of the process. To suppress the short length scale
instability, the diffusion driven by the interface motion along
the interface is introduced with the short length scale �D. In
the case of no diffusion, we obtain the steadily propagating
finger solutions for a finite range of propagation speed, but
the numerical simulations with the small diffusion suggests
that they are unstable, and a complex behavior of the inter-
face is seen.
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